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Abstract. The problem of an open string in background B-field is discussed. Using the discretized model in
details we show that the system is influenced by an infinite number of second class constraints. We interpret
the allowed Fourier modes as the coordinates of the reduced phase space. This enables us to compute the
Dirac brackets more easily. We prove that the coordinates of the string are non-commutative at the bound-
aries. We argue that in order to find the Dirac bracket or commutator algebra of the physical variables, one
should not expand the fields in terms of the solutions of the equations of motion. Instead, one should impose
a set of constraints in suitable coordinates.

PACS. 11.10.Ef; 04.60.Ds

1 Introduction

Constrained systems were first introduced by Dirac [1]
within the discussion about singular Lagrangians. In such
systems, Euler–Lagrange equations of motion lead to some
acceleration-free identities as a consequence of the singu-
larity of the Hessian (second derivative of the Lagrangian
with respect to velocities). At the Hamiltonian level, this
leads to the emergence of constraints, i.e. functions of
phase space coordinates that should vanish on-shell.
We call that first class constraints are responsible for

gauge transformations; while second class constraints re-
strict the system to a smaller sub-manifold of the phase
space in which a Poisson structure can be recognized. In
a very simplified picture, first class constraints may be vi-
sualized as some momenta, so that they are involutive and
generate transformations in their conjugate coordinates
(i.e. the gauged variables). On the other hand, second class
constraints may be visualized as conjugate pairs of coordi-
nates and momenta whose Poisson brackets in the original
phase space are nonzero. This seems to contradict the fact
that they vanish on the surface of motion. Hence, it is ne-
cessary to introduce a new bracket, i.e. the Dirac bracket,
such that the physical quantities (quantities defined on the
constraint surface) have vanishing brackets with the con-
straints. A complete review on constrained systems can be
found in [2]
The singularity of the Lagrangian is not necessarily the

only origin of the constraints. One may find constraints in
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the Lagrangian formalism in any way so that one can im-
pose acceleration-free equations on the system; or in the
Hamiltonian formalism, in any way so that one can impose
a primary constraint on the system. As far as we know,
apart from artificial problems in which primary Hamilto-
nian constraints are imposed by hand, no serious model has
been introduced in which constraints emerge naturally and
not as the result of the singularity of the system.
In the last years of the previous millennium, in an-

other branch of research, a new phenomenon was discov-
ered that has relationships with constrained systems. It
was found that for an open string coupled to a background
B-field, the canonical quantization procedure fails at the
end points [3–5]. It was also observed in [6, 7] based on the
work of [8], that in the presence of mixed boundary con-
ditions due to the B-field, the propagators of coordinate
fields possess singularities that can be interpreted as the
non-commutativity of coordinate fields especially at the
boundaries (branes). The origin of this non-commutativity
has been intensively discussed since that time [9–16].
This observation led some authors [4, 5, 9] to deduce

that the Dirac mechanism of second class constraints has
some role at the boundaries of the string; hence the idea of
considering the boundary conditions as Dirac constraints
was born [4, 5]. Since the boundary conditions only put
limitations on the solutions of equations of motion, if ac-
cepted as constraints they should somehow be related to
the second class systems.
In the next section, we will review the main set up of the

above model, following mainly the method of reference [9].
Assuming the boundary conditions as constraints, we use
the total Hamiltonian to impose their consistency. As we
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will see, the Lagrange multipliers are determined at the
first stage of consistency (to be zero), but at the same time,
the second level constraints emerge. Then third level con-
straints are derived by demanding the consistency of sec-
ond level ones, and so forth. In this way, the procedure of
finding the constraints proceeds unlimitedly. This suggests
a new category in comparison with the ordinary theory of
constrained systems in which the constraint chains termi-
nate after a limited number of steps either by arriving at
an identity (for first class systems), or by determining the
Lagrange multipliers (for second class systems) [17].
During recent years, several different and even oppo-

site approaches have been applied to the problem, and
most of them have derived similar results. Some authors do
not consider the consistency of the constraints completely.
They calculate the Dirac brackets only by using first or at
most second level constraints [10, 18, 19]. The idea of an in-
finite number of second class constraints at the boundaries,
however, was accepted by many authors [4, 5, 9], although
fewer researchers note what happens to the Lagrange mul-
tipliers. Some authors have also tried to overcome the
problem by considering discretized models [9] or by follow-
ing the symplectic approach [11, 20, 21]. Such approaches,
although they verify that the system is constrained in some
sense, do not give final justification about the constraint
characteristics of the system.
Our first objective in this work is to come to a dis-

tinctive understanding about the constraint structure of
the model. We want to know in what sense we find an
infinite number of constraints. We think that the key to
study this part of the problem is the discretized model. It
is known that the primary constraints emerge as the con-
tinuum limit of the equations of motion of the end points
in the discretized model [9, 10]. However, the investigation
of the consistency conditions to deduce the set of secondary
constraints has not yet been studied for discretized models.
In Sect. 3 and 4 we have done this. We will see that con-
sidering the continuum limit together with the physical
condition of continuity gives the set of desired constraints.
We think that in the light of this study of discrete models
any doubt about the existence of infinite number of con-
straints disappears.
The next problem concerns the properties of the re-

duced phase space. In particular, one needs to know about
the induced brackets on this space, which are the same as
the Dirac brackets. With an infinite number of constraints,
the matrix of the Poisson brackets of constraints is infi-
nite dimensional. One needs to invert it to find the Dirac
brackets. Some authors have accepted the existence of an
infinite number of constraints [5, 9] and have tried to solve
this problem directly. However, as we will explain in the
following section, the mathematical manipulations given in
different papers are not yet convincing. In fact, since peo-
ple expected to end up with non-commutativity in brane
coordinates due to physical intuitions, most (but not all)
authors have derived the famous result of [6] with more or
less problematic mathematical methods.
In Sect. 5, we will try to give a very simple approach

to find the Dirac brackets on the basis of Fourier modes.
We show that this powerful physical tool (considered in a

slightly different sense in [22]) serves as the suitable coor-
dinate for describing the reduced phase space. From this
point of view, after imposing the constraints, the brackets
of the remaining physical modes can be written automati-
cally, and then theDirac brackets of the original fields canbe
derived, using their expansion in terms of physical modes.
Apart from convenience in calculations, this method helps
one to better understand the mechanism that leads to un-
usual brackets of coordinate fields at the boundaries.
In Sect. 6, we comprehensively discuss using the clas-

sical equations of motion of the fields in the process of
quantization. We argue that, in fact, the algebra of the ob-
servables is the essential entity in the quantization process
rather than their dynamics. We show that only the dynam-
ics of constraints must be investigated before quantization.
In this sense, we have derived the quantum properties of
the reduced phase space, including the non-commutativity
of brane coordinates, without using the solutions of the
equations of motion.

2 Problem setup

Consider an open string with coordinate fieldsXµ in a tar-
get space specified by µ = 0, 1, . . . , D. Suppose that the
string is coupled to a given antisymmetric fieldFµν , which,
for simplicity, we assume has no dynamics. The end points
σ = 0, l of the string are constrained to move on a p+1-
dimensionalDp-brane characterized by X

a = 0 for a= p+
1, . . . , D. The U(1) gauge fields, Ai i= 0, 1, . . . , p are also
coupled to the string on the boundary (Dp-brane). The ac-
tion of the model can now be written as

S =
1

4πα′

×

∫
Σ

dσdτ
[
Gµν∂a X

µ∂bX
νgab+ εabBµν∂a X

µ∂bX
ν
]

+
1

2πα′

∮
∂Σ

dτAi∂τX
i , (1)

where ∂Σ is the boundary of target space Σ, gab is the
metric on the worldsheet and εab is the antisymmetric ten-
sor on the worldsheet. For simplicity, we consider only
the bosonic sector. Similar arguments can be applied to
a superstring [13, 23]. The bulk and boundary fields can
be combined to construct a modified Born–Infeld field
strength F = B− dA . Let also both end points attach
to the same brane. Assume α′ = 1

2π and the background
metric to be flat: Gµν = ηµν . Suppose, moreover, that the
field strength is constant everywhere, given by the constant
antisymmetric matrix Bij . Using these simplifications the
action reads:

S =
1

2

∫
dσdτ

[
∂a X

µ∂bXµg
ab+Bij∂a X

i∂bX
jεab
]
. (2)

Fixing the diffeomorphisms and scaling invariance, the
above action takes the form

S =
1

2

∫
dσdτ

[
ẊµẊµ−X

′µX ′µ+2BijẊ
iX ′j
]
, (3)
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where “dot” and “prime” represent differentiation with re-
spect to τ and σ, respectively. Besides the conformal sym-
metry, this action has a global symmetry under transform-
ation of the coordinate fields by a constant, i.e.

Xµ(σ, τ)→Xµ(σ, τ)+ cµ . (4)

Varying the action with respect to the fields Xµ gives the
equations of motion

∂2τX
µ(σ, τ)−∂2σX

µ(σ, τ) = 0 µ= 0, 1, . . . , D , (5)

together with the boundary conditions

∂σX
i(σ, τ)+Bij∂τX

j(σ, τ) = 0 i= 0, 1, · · · , p

Xa = 0 a= p+1, · · · , D (6)

at the end points σ = 0, l. As is apparent, the boundary
conditions in the directions perpendicular to the Dp-brane
are simply of Dirichlet type; while along the Dp-brane we
have mixed boundary conditions. This is the only place
where the effect of the B-field is experienced. In the fol-
lowing we concentrate on this part of the problem and
ignore the coordinate fields with Dirichlet boundary con-
ditions. One simple way to realize this point is to assume
that p =D. On the other hand, at the end of calculations
one can turn off theB-field in as many directions as one de-
sires to achieve results concerning the Neumann boundary
conditions. The equations (6) do not contain accelerations,
so they may be viewed as primary Lagrangian constraints.
The canonical momentum fields and the Hamiltonian of
the system read

Πi(σ, τ) = ∂τX(σ, τ)+Bij∂σXj(σ, τ) (7)

H =
1

2

∫ l
0

[
(Πi−Bij∂σXj)

2+(∂σXi)
2
]
dσ . (8)

The primary constraints (6) in terms of the phase space
variables are

Φi = Φi(σ)|σ=0 , Φ̄i = Φi(σ)|σ=l , (9)

with

Φi(σ, τ) =Mij∂σXj(σ, τ)+BijΠj(σ, τ) , M = 1−B
2 .
(10)

As for every constrained system, given the primary con-
straints (9), the total Hamiltonian

HT =H+λiΦ
1
i + λ̄iΦ̄

1
i (11)

is responsible for the dynamics of the system. Hence, the
consistency of the constraints gives

Φ̇1i =
{
Φ1i ,HT

}
=
{
Φ1i ,H

}
+λj
{
Φ1i , Φ

1
j

}
= 0

˙̄Φ
1

i =
{
Φ̄1i ,HT

}
=
{
Φ̄1i ,H

}
+ λ̄j
{
Φ̄1i , Φ̄

1
j

}
= 0 . (12)

Using (8)–(10) and the fundamental Poisson brackets

{Xi(σ, τ), Xj(σ
′, τ)}= 0

{Xi(σ, τ),Πj(σ
′, τ)}= δijδ(σ−σ

′)

{Πi(σ, τ),Πj(σ
′, τ)}= 0 , (13)

it is easy to see that

Φ2i ≡
{
Φ1i ,H

}
= ∂σΠi|σ=0 (14)

{
Φ1i , Φ

1
j

}
=−2(MB)ij

∫
δ(σ)δ(σ′)∂σδ(σ−σ

′)dσdσ′ .

(15)

Similar equations also arise for Φ̄i at the end point σ = l.
Let us see how can the consistency conditions (12) come
true. Using (14) and (15), we find that the two Poisson
brackets appearing on the right-hand side of (12) are not
of the same order. This fact is explained in more detail
in [9] using the regularized form of the Dirac delta func-
tions. Therefore, the only way to satisfy the consistency
conditions (12) is to assume that

λj = λ̄j = 0 ,

Φ2i = Φ̄
2
i = 0 . (16)

The important result is that the secondary constraints
emerge while the Lagrange multipliers are determined.
One should continue the consistency process by demanding
the time derivatives of Φ2i and Φ̄

2
i to vanish. From (11) and

(16) we haveHT =H from now on, so

Φ3i = Φ̇
2
i = {Φ

2
i ,H}= ∂

2
σΦ(σ, τ)|σ=0 = 0 , (17)

with similar expressions for Φ̄3i . In this way, two infinite
constraint chains appear as

Φni =

{
∂n−1σ Φi|σ=0 n= 1, 3, · · ·

∂n−1σ Πi|σ=0 n= 2, 4, · · ·
(18)

Φ̄ni =

{
∂n−1σ Φi|σ=l n= 1, 3, · · ·

∂n−1σ Πi|σ=l n= 2, 4, · · ·
. (19)

Now the following problem arises: what are the Dirac
brackets of the fields due to the above infinite constraints?
We recall that the Dirac bracket of two quantities f and g
in phase space is defined as

{f, g}D. B = {f, g}+{f, χi}C
ij{χj, g} , (20)

where χi are second class constraints and C
ij is the inverse

of

Cij = {χi, χj} . (21)

In the present problem Cij is infinite dimensional and it
is difficult (or in fact impossible) to find its inverse. It is
obvious that for allm, n, i and j{

Φni , Φ̄
m
j

}
= 0 . (22)

Therefore, the Dirac bracket (20) contains two separate
parts, one due to the inverse of Cnmij = {Φ

n
i , Φ

m
j } and the

other due to C̄nmij , defined similarly. Thus it is enough to
carry out the calculations only for the set of Φ’s. Using the
integral form of the constraints:

Φni =

∫
dσδ(σ)∂nσΦi(σ, τ) n= 0, 2, · · ·

Φni =

∫
dσδ(σ)∂nσΠi(σ, τ) n= 1, 3, · · · (23)
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it is straightforward to calculate

Cnmij =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 n,m= 1, 3, · · ·

−2(MB)ij

∫
δ(σ)δ(σ′)∂m+1σ ∂nσ′δ(σ−σ

′)dσdσ′

n,m= 0, 2, · · ·

Mij

∫
δ(σ)δ(σ′)∂m+1σ ∂nσ′δ(σ−σ

′)dσdσ′

n= 1, 3, · · · m= 0, 2, · · ·

.

(24)

This matrix possesses a finite dimensional part with i, j in-
dices andan infinite dimensional partwithm,n indices.The
finite part canbe inverted easily, while for infinite part there
exist serious difficulties. In fact, the most crucial point in
studying the problem is here. Among so many publications
where the authors avoided the existence of infinite number
of constraints, there are two main references, published al-
most simultaneously, that tried to invert the matrix Cnmij
above and to calculate the Dirac brackets. The first is the
famous work of [5], where the authors tried to write down
the inverse of Cnmij by using some undetermined functions

Rnm(σ
′, σ′′) and Snm(σ

′, σ′′). However, it is essential take
into account the presence of δ(σ) and δ(σ′) in (24). In fact, it
may happen that some expressions vanish for intermediate
points of the string before going to the boundaries.1

The next work in this regard was [9], where the authors
tried to regularize the delta functions in (24) and then
invert Cnmij . However, in practice this method does not
seem to make it possible to find C−1 directly. The authors
wrote the answer by considering some desired properties
of Dirac brackets. In this way, the main features of the
answer was derived, but unfortunately it contains the reg-
ularization parameter of delta functions, which does not
sound plausible. The reality is that, apart from some ex-
ceptional references [16, 19], most authors have tried to
find, in different ways, the original results that imply the
non-commutativity of coordinate fields Xµ at the bound-
aries (see (69) in the following).We will show in Sect. 5 that
applying the familiar approach of mode expansion in the
context of constrained systems gives reliable results.
Before that, however, we shall in the following two sec-

tions establish the existence of an infinite number of con-
straints by studying the fundamental discrete model cor-
responding to the continuum model.

3 Discretization

The discretized Lagrangian corresponding to the model
given in (3) can be written as:

1 This precise point led the author of [19] to deduce that the
first level constraints commute, and finally that the coordinate
field are commutative at the boundaries after quantization. Be-
ing more accurate

[
Φ(σ, τ ), Φ(σ′, τ )

]
= 0 for arbitrary σ, σ′ due

to antisymmetry of B, while using (23) shows that at boundary
σ = 0, [Φ(0, τ ), Φ(0, τ )] �= 0 as can be seen from (24).

L=
1

2
ε

N∑
n=0

(
Ẋn

)2
−
1

2
ε

N−1∑
n=0

(
Xn+1−Xn

ε

)2

+
N−1∑
n=0

ẊnB (Xn+1−Xn) . (25)

For the sake of simplicity in notation we have dropped the
i, j indices on the B-field. Thus B should be considered as
a matrix and Xn as a column vector in the above equation
as well as in the following ones. All quantities associated to
Xn carry the same hidden index of a column vector. The
continuum limit is achieved by the following replacements:

N →∞

ε→ 0

Nε→ l

nε→ σ

Xn→X(σ, τ)

Xn+1−Xn
ε

→ ∂σX(σ, τ) . (26)

Here we have ascribed the right difference (divided by ε)
to the spatial derivative. It is also possible to do the same
with the left difference. In the continuum limit the physical
quantities in the neighboring points are the same.
The Euler–Lagrange equations of motion for intermedi-

ate points are:

Ẍn−
∆n
ε2
+ εB

∆̇n
ε2
= 0 , (27)

where

∆n ≡Xn+1−2Xn+Xn−1 . (28)

The last term in (27) is of order ε and vanishes in the
continuum limit (26), giving the wave equation (5), which
implies that the B-field has no effect in the intermediate
points and appears only in the equations of motion of the
boundary points, as follows:

εẌ0−
X1−X0
ε

−B(2Ẋ0− Ẋ1) = 0

εẌN +
XN −XN−1

ε
+BẊN−1 = 0 . (29)

In the continuum limit the terms proportional to ε in (29)
vanish, while Ẋ1 and ẊN−1 can be replaced by Ẋ0 and
ẊN , respectively, to obtain the following acceleration-free
equations:

∂σX(σ, τ)+BẊ(σ, τ)|σ=0,l = 0 . (30)

Equation (30) are the primary Lagrangian constraints. In
Hamiltonian formalism the momenta conjugate to coordi-
natesXn are

pn = εẊn+B(Xn+1−Xn) n= 0, 1, · · · , N −1

pN = εẊn . (31)
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The canonical Hamiltonian reads:

H =
1

2ε

N−1∑
n=0

[
(pn−B(Xn+1−Xn))

2+(Xn+1−Xn)
2
]

+
1

2ε
p2N . (32)

To achieve the continuum limit one should complete the
list given in (26) as follows:

pn→ 0 n= 0, 1, · · · , N
pn

ε
→Π(σ, τ) = Ẋ(σ, τ)+B∂σX(σ, τ)

n= 0, 1, · · · , N −1

H

ε
→H(Π(σ, τ), X(σ, τ), ∂σX(σ, τ)) , (33)

where in the second line (31) is used andΠ(σ, τ) andH are
the momentum field and Hamiltonian density, respectively.
The canonical equations of motion for the intermediate
points are as follows:

ṗn =
1

ε
[B(pn−pn−1)+M∆n] n= 1, 2, · · · , N −1

(34)

Ẋn =
1

ε
[pn−B(Xn+1−Xn)] 0≤ n <N. (35)

For the end points we have

ṗ0 =
1

ε
[Bp0+M(X1−X0)] ,

ṗN =−
1

ε
[BpN−1+M(XN −XN−1)] . (36)

The right-hand side of the above equations are finite in
the continuum limit, while the left-hand side vanishes (see
(33)). Thus (36) can be viewed as the following primary
Hamiltonian constraints

Φ1 =M∂σX(σ, τ)+BΠ(σ, τ)|σ=0,l . (37)

It should be noticed that (pN − pN−1) is of order ε2, so
in the continuum limit pN−1/ε can also represent the
end point momentum Π(σ = l, τ), as well as pN/ε. For
the same reason, (XN −XN−1)/ε can be interpreted as
∂σX(σ, τ)|σ=l despite our previous convention of the at-
tribution of right difference to the spatial derivative at
a given point. These constraints can also be derived from
Lagrangian constraints (29) by inserting Ẋ(σ, τ) from (7).
The constraints at the end points are completely similar to
each other. Thus, without losing any point, we can concen-
trate only on the boundary σ = 0. The same arguments can
be established for the other boundary σ = l.

4 Consistency condition for the constraints

In the previous section, we showed that the equations of
motion for the end points of the string can be treated as

primary constraints. As in any constrained system, one
should investigate the consistency of the constraints. In
discrete model this means that one should differentiate the
equations producing the constraints, i.e. (36) with respect
to time to give

1

ε

[
Bṗ0+M(Ẋ1− Ẋ0)

]
=O(ε) . (38)

Using (35) to insert Ẋ0 and Ẋ1 into (38) gives

1

ε
Bṗ0+

1

ε2
M(−B∆1+p1−p0) =O(ε) . (39)

InsertingM∆1 from (34) in (39) results in

1

ε
B(ṗ0− ṗ1)+

1

ε2
(p1−p0) =O(ε) . (40)

The first term is of order ε, while the second term is the
discrete version of ∂σΠ(σ, τ)|σ=0. Therefore, in the limit
ε→ 0, the second level constraint emerges as

Φ2 = ∂σΠ(σ, τ)|σ=0 = 0 . (41)

One should proceed to the consistency condition for the
new constraint Φ2. Due to some technical difficulties, if we
wish to do this in the discrete model it is not a good idea to
differentiate directly the discrete version p1−p0

ε2
of the con-

straint Φ2. Instead, it is better to represent Φ2 with p2−p1
ε2
.

In fact, we can transfer the condition ∂σΠ(σ, τ)|σ=0 = 0 to
the right by the infinitesimal distance ε. This is reasonable,
since in the continuum limit every local condition on the
fields should be valid in a small neighborhood of a point,
not only strictly at the given point. This is, in fact, the
“continuity hypothesis”. In other words, it is not plausible
to go to continuum limit only by taking the limits given in
(26) and (33). It is also necessary to impose the continuity
hypothesis on the physical quantities, which implies that
the difference of discrete values of fields in the neighboring
points can be at most of order ε. Therefore, differentiating
Φ2 = p2−p1

ε2
+O(ε) gives

Φ3 =
1

ε2
(ṗ2− ṗ1)+O(ε) . (42)

It is worth noting that differentiation with respect to time
does not change the order of a quantity. The reason is that
the time derivative of a quantity is achieved by the Pois-
son bracket of that quantity with the Hamiltonian of order
ε; but in computing the Poisson bracket, one differentiates
with respect to canonical momenta pn, which are also of
order ε. Thus the net result is of the same order. We insert
ṗ1 and ṗ2 from (34) into (42), to obtain

Φ3 =
1

ε3
[B(p2−2p1+p0)+M(X3−3X2+3X1−X0)]

+O(ε) . (43)

Going to the continuum limit we have

Φ3 =
[
B∂2σΠ(σ, τ)+M∂

3
σX(σ, τ)

]
|σ=0 = ∂

2
σΦ
1 , (44)

where we have used (37).
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To investigate the consistency of Φ3, the strategy is the
same as before: we should differentiate Φ3 with respect to
time, but we need to transfer the terms one step to the
right. Then using the equations of motion (34) and (35),
and the continuity hypothesis, and going back to the con-
tinuum limit, one obtains the next constraint as

Φ4 = ∂3σΠ(σ, τ)|σ=0 . (45)

It is reasonable that this procedure will produce at the
boundaries the infinite set of constraints

Φ1, ∂σΠ, ∂
2
σΦ
1, ∂3σΠ, · · · , (46)

which is the same as (18) and (19). One may wonder about
the validity of constraints not only at the end points, but
also in an infinite number of their adjacent points. The
answer is that a real continuous system consists of un-
countably infinite points, while in the discretized model
one imposes the constraints on a countable infinite num-
ber of points in the vicinity of the boundaries. Thus
physically speaking, nothing bad has happened. In other
words, suppose we extend the validity of the constraint
∂σX(σ, τ)|σ=0 = 0 (in the case of a simple string with free
end points) to a large countable number of the adjacent
points of the boundary. Even when the number of points
goes to infinity, it will still remain in an infinitesimal neigh-
borhood of the boundary. In other words, it will never
extend in the continuum limit to a finite distance from the
boundary.

5 Reduced phase space

In this section, we try to find out the most suitable basis
to describe the physical (reduced) phase space. Whenever
second class constraints exist, one should first impose the
constraints to eliminate the redundant variables and reach
the reduced phase space. One should then try to find the
most suitable bracket on the reduced phase space. It is
clear that the ordinary canonical quantization procedure
(i.e. converting the Poisson brackets to commutators) is
not consistent in the original phase space, since quantum
operators corresponding to constraints have non-vanishing
commutators, which contradicts the necessity that they
should vanish either strongly or on the physical states.
However, a consistent quantization procedure can be fol-
lowed in the reduced phase space. This is achieved by con-
verting the induced brackets on the reduced phase space to
commutators.
Fortunately, the famous Darboux theorem ensures us

that a unique and well-defined bracket, which is the same
as the Dirac bracket, exists on this space [24]. In fact, the
Poisson bracket in the original phase space induces the
Dirac bracket on the reduced phase space [1, 2]. In other
words, for any two functions f(q, p) and g(q, p), one can
write

{f(q, p) , g(q, p)}D. B = {f(q, p)|Φ=0 , g(q, p)|Φ=0} , (47)

where f(q, p)|Φ=0 means evaluation of f(q, p) on the con-
straint surface described by the equations Φ= 0.
In the general case, the second class constraints may

be some complicated functions of the coordinates. If so,
the constrained and physical degrees of freedom are mixed
with each other and it is not generally an easy task to sep-
arate them. Sometimes it is almost impossible to compute
the Dirac brackets directly from the definition (20), as is
the case for our current model (string in the background
B-field). Moreover, it may happen that the resulting quan-
tum algebra is difficult to handle, especially in order to find
the corresponding representations.
Now consider an idealized model in which the second

class constraints are given by qk+1, · · · qN , pk+1, · · · pN ,
where the coordinates (q1 · · · qN , p1 · · · pN ) describe the
original phase space in which the Poisson brackets are de-
fined as

{f, g}=
N∑
i=1

(
∂f

∂qi

∂g

∂pi
−
∂f

∂pi

∂g

∂qi

)
. (48)

It is clear that the reduced phase space with coordinates
(q1 · · · qk , p1 · · · pk) acquires a natural bracket in which
summations run from 1 to k, i.e.

{f, g}D.B. =
k∑
i=1

(
∂f

∂qi

∂g

∂pi
−
∂f

∂pi

∂g

∂qi

)
. (49)

Such a truncated Poisson bracket is a realization of the
instruction (47) and it can be checked that is equal to
the Dirac bracket of (20). In fact, after imposing the con-
straints on this system, the Dirac brackets of the remaining
variables are the same as their Poisson brackets. Hence,
quantization of the system may be achieved in the most
simple way, such that the familiar algebra of x−p variables
and the corresponding representations are still valid.
Due to the extreme simplicity of the above system, it is

much more convenient to change the coordinates of a the-
ory with second class constraints to a basis in which the
constraints constitute a set of conjugate pairs.We call such
a coordinate system normal coordinates. In most phys-
ical theories the Fourier modes are normal coordinates.
Traditionally, people are used to imposing assumed com-
mutation relations among the Fourier coefficients in order
to quantize a field. However, the important point, which
is not clearly stated in the literature, is that the Fourier
modes are the normal coordinates describing the reduced
phase space. In other words, they carry the “net physics of
the theory”, hence they are independent variables that are
suitable for quantization.

5.1 Free bosonic string

For an example consider a free bosonic string with Neu-
mann boundary conditions [9]. In this simple case we are
given the conjugate fieldsX(σ, τ) andΠ(σ, τ) with the fol-
lowing Poisson bracket:

{X(σ, τ),Π(σ′, τ)}= δ(σ−σ′) . (50)
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Suppose the fields are real. The most general form of their
Fourier expansion can be written as:

X(σ, τ) =
1
√
2π

∫ ∞
−∞
dk [ak(τ) cos kσ+ bk(τ) sin kσ]

Π(σ, τ) =
1
√
2π

∫ ∞
−∞
dk [ck(τ) cos kσ+dk(τ) sin kσ] .

(51)

It is obvious that ak(τ) and ck(τ) should be even func-
tions of k, while bk(τ) and dk(τ) should be odd. Using (50),
it is easy to see that (ak, ck) and (bk, dk) are conjugate pairs
in the space of new variables, i.e.

{ak(τ), ck′ (τ)}= {bk(τ), dk′(τ)} = δ(k−k
′) (52)

and all other Poisson brackets vanish. The second class
constraints of the system are:

∂2n+1σ X(σ, τ)|σ=0,l = 0 ,

∂2n+1σ Π(σ, τ)|σ=0,l = 0 n= 0, 1, 2, · · · , (53)

which can be derived similarly as inSect. 2 or by imposing
B = 0 on its results. The constraints at σ = 0 give

∫ ∞
−∞
dk(−1)nk2n+1bk = 0 ,

∫ ∞
−∞
dk(−1)nk2n+1dk = 0 . (54)

Since bk and dk are odd, (54) can be satisfied for all n,
iff bk = dk = 0, hence (51) change to

X(σ, τ) =
1
√
2π

∫ ∞
−∞
dkak(τ) cos kσ ,

Π(σ, τ) =
1
√
2π

∫ ∞
−∞
dkck(τ) cos kσ . (55)

This means that in the basis of Fourier modes, bk and dk
are constrained variables and the reduced phase space is
simply achieved by omitting them. This is the advantage of
using the Fourier modes as normal coordinates. If we insist
on working in the original basis X(σ, τ) and Π(σ, τ), we
would encounter difficulties explained at the end of Sect. 2.
Now let us consider the constraints on the end point σ = l.
They give

∫ ∞
−∞
dk(−1)nk2n+1ak sin kl = 0 ,

∫ ∞
−∞
dk(−1)nk2n+1ck sin kl = 0 . (56)

Since ak and ck are even, the integrands in (56) are even
with respect to k. Thus the only way to impose the con-
straints is:

ak = ck = 0 for kl �= 0, π, 2π, . . . . (57)

Once again we see the miracle of working with Fourier
modes. In this basis, a large class of the coordinates ak
and ck are omitted due to the constraints, only those with
discrete values for k remain as k = nπ/l for integer n. Fi-
nally, the original field variables can be expanded in terms
of infinite countable Fourier modes an and cn as canonical
coordinates of the reduced phase space as:

X(σ, τ) =
1
√
l
a0(τ)+

√
2

l

∞∑
n=1

an(τ) cos
nπσ

l
,

Π(σ, τ) =
1
√
l
c0(τ)+

√
2

l

∞∑
n=1

cn(τ) cos
nπσ

l
. (58)

It is easy to see that the Fourier modes am and cn obey the
canonical brackets:

{am, an}= {cm, cn}= 0, {am, cn}= δmn . (59)

Using expansion (58) and brackets (59), one can com-
pute the Dirac brackets of any two physical functions of
the original variables X(σ, τ) and Π(σ, τ). This means
that we have followed the prescription given in (51) to
find the Dirac brackets. As is well-known [1], the second
class constraints should strongly vanish before quantiza-
tion. This fact can be stated more clearly in terms of the
Fouriermodes. The constrainedmodes (bk, dk) for all k and
(ak, ck) for k �= nπ/l should vanish before quantization.
Then one can quantize the theory by assuming canonical
commutation relations among (âm, ĉm) in the expansion
(58) as

[âm, ĉn] = ih̄δmn . (60)

5.2 Open string in the background B-field

Let us now consider the string in the background B-field.
We expand the main fields X(σ, τ) and Π(σ, τ) as done in
(51), with (ak, ck) and (bk, dk) as conjugate pairs. The con-
straints (18) and (19) can be rewritten as

∂2nσ Φ(σ, τ)|σ=0,l = 0 ,

∂2n+1σ Π(σ, τ)|σ=0,l = 0 , n= 0, 1, 2, · · · . (61)

The constraints (61) at σ = 0 read

∫ ∞
−∞
dk(−1)nk2n(kMbk+Bck) = 0 ,

∫ ∞
−∞
dk(−1)nk2n+1(dk) = 0 . (62)

Remembering that (bk, dk) are odd and ck is even with re-
spect to k, the constraints (62) are satisfied for all n and
k �= 0 iff

bk =−
1

k
M−1Bck ,

dk = 0 . (63)
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Now, imposing the constraints (61) on the end point
σ = l gives∫ ∞

−∞
dk(−1)nk2n(−kMak) sin kl = 0 ,

∫ ∞
−∞
dk(−1)nk2n+1(ck) sin kl = 0 . (64)

These equations show that (ak, ck) and consequently bk
should vanish for k �= nπ/l (n integer). To this end, some
care is needed for the zero mode (k = 0). In the limit k→ 0,
using (63) we have

lim
k→0
bk sinkσ = lim

k→0

(
−
1

k
M−1Bck sin kσ

)
=−M−1Bc0σ.

(65)

Therefore, the linear term (−M−1Bc0σ), coming from the
zero mode of the sine terms, should be present in the ex-
pansion of X(σ, τ). Similarly to (58), the term 1√

l
a0 is also

necessary as the zero mode of cosine terms. However, ac-
cording to the global symmetry given in (4), we are allowed
to add any constant term to the expansion ofX(σ, τ). This
term should not disturb the validity of constraints (61) and
should vanish in the limit B→ 0. We fix this arbitrariness
by adding the constant term asM−1Bc0l/2. As we will see
later, c0 is constant according to the equations of motion
and moreover, this choice guarantees that the coordinates
of the center of mass of the string are commutative.
Putting all these results together, the most general

form of the fields satisfying the constraints can be written
as

X(σ, τ) =
1
√
l

(
a0−M

−1Bc0

(
σ−
l

2

))

+

√
2

l

∞∑
n=1

(
an cos

nπσ

l
−
l

nπ
M−1Bcn sin

nπσ

l

)
,

Π(σ, τ) =
1
√
l
c0+

√
2

l

∞∑
n=1

cn cos
nπσ

l
. (66)

These relations show that in the case of mixed boundary
conditions again an and cn are suitable canonical coor-
dinates of the reduced phase space. Note that (an, cn),
as canonical coordinates, still obey the canonical brack-
ets (59). Hence, from the general prescription given in
(47), it is easy to calculate the Dirac brackets of the fields,
just by using their expressions in terms of normal coor-
dinates an and cn. As can be seen from (66), the B-field
appears only in the expansion of coordinate fieldsXi(σ, τ),
while the momentum fieldsΠi(σ, τ) are unchanged. There-
fore, the Dirac brackets {Xi(σ, τ),Πj(σ′, τ)}D. B and
{Πi(σ, τ),Πj (σ′, τ)}D. B are the same as the correspond-
ing Poisson brackets given in (13). However, for the Dirac
brackets of coordinate fields, from (59) and (66), one finds

{Xi(σ, τ), Xj(σ
′, τ)}D. B

= (M−1B)ij

[
σ+σ′

l
−1+

2

π

∞∑
n=1

1

n
sin
nπ

l
(σ+σ′)

]
.

(67)

The summation over the sines is the Fourier expansion of
saw waves as follows:

∞∑
n=1

1

n
sinnθ =

{
− 12 (π+ θ) −π ≤ θ < 0
1
2 (π− θ) 0< θ ≤ π

. (68)

This function is discontinuous at θ = 0, 2π, . . . . Supposing
its values at these points to be the average of right and left
limits, i.e. zero, we can write the final result as:

{Xi(σ, τ), Xj(σ
′, τ)}D. B = 0 σ, σ

′ �= 0 ,

{Xi(0, τ), Xj(0, τ)}D. B =−2(M
−1B)ij ,

{Xi(l, τ), Xj(l, τ)}D. B = 2(M
−1B)ij . (69)

As we can see, after quantization the coordinate fields are
noncommutative at the end-points of the string, in agree-
ment with the well-known results given in the literature [4,
5, 9]. If we had not added the constant term M−1Bc0l/2
to the expansion (66), the above result would have differed
from (69) only by a constant term throughout the string, as
well as at the end-points. In other words, the noncommu-
tativity at the end-points means that σ = 0 and σ = l have
opposite signs, since we have imposed the condition that
the center of mass coordinates are commutative.
We emphasize in our derivation of the important result

(69) that we have not used the expansions of fields in terms
of the solutions of the equations of motion. In fact, we have
not considered the time dependence of the physical modes
an(τ) and cn(τ), which should be determined by means of
the special form of the Lagrangian or Hamiltonian. This
feature of our approach will be explained in more detail in
the next section.

6 Quantization and equations of motion

The traditional canonical quantization procedure is as fol-
lows: one considers the general solution of the classical
equations of motion, then imposes the boundary condi-
tions to decrease the number of possible modes2, and
finally assumes suitable commutation relations amongst
the physical modes to quantize the theory. One may ask
the question of whether it is really necessary, or even al-
lowed, to use classical equations of motion in the process of
quantization.
Let us first study the problem in an ordinary (uncon-

strained) system. The important point is that the special
form of the Hamiltonian (or Lagrangian) is not the es-
sential point that determines the algebra of physical ob-
servables and, consequently, the structure of the space of
physical states of the theory. On the other hand, the role of
the Hamiltonian is only to determine the dynamics of the
system. Given the initial state of a system, the Hamilto-
nian is the main tool that gives the time evolution of the

2 The classical equations of motion are usually linear differ-
ential equations; thus one can expand their solutions by using
a complete set of modes.
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state of the system. However, people usually try to con-
struct the basis of the space of the physical states in such
a way that the Hamiltonian operator is diagonal, since this
provides the consequent convenience to follow the dynam-
ics of the system.
For example, in one dimension whatever the Hamilto-

nian is, one can use the algebra of the x−p operators acting
on the spacewith |x′ >’s or |p′ >’s as the basis, as well as the
equivalent algebra of a−a† operators and the correspond-
ing basis inwhich the operatora†a is diagonal.However, it is
well-known that for a free particle the former algebra ismore
suitable, while for the harmonic oscillator the latter is more
appropriate to study the dynamics of the system.
To this end, we wish to emphasize that conceptually it

is not necessary to treat the quantum fields as the solutions
of the classical equations of motion. However, the reader
may have encountered several books or papers where the
authors write down the fields as an expansion in terms of
solutions of the classical equations of motion (for example,
plane waveswith definiteω−k relations) and then quantize
the theory by imposing assumed canonical algebra among
the coefficients of the expansion. Careful attention leads to
the observation that most of the time, the explicit time de-
pendence of the terms in the expansion is not used during
the subsequent analysis. For example, in the harmonic os-
cillator problem, it is only the quantum algebra [a, a†] = 1,
coming from the classical algebra {x, p}P.B. = 1 on quanti-
zation, that determines the basis of physical states as |n >
, |n+1 >, · · ·3. Then the explicit form of the Hamiltonian
may be used to determine the time dependence of a(t) and
a†(t) in theHeisenberg picture asa(t) = a(0) exp(−iωt) and
a†(t) = a†(0) exp(iωt), which is not essential in determining
the quantum properties of the observables or the space of
physical states.
Our experience shows us that in quantum field theory

the Fourier expansion of the fields turns out, most of the
time, to be useful in the process of quantization. As dis-
cussed in the case of the models considered in this paper,
this is just a change of variables in the phase space from
X(σ, τ) and Π(σ, τ) say, to ak(τ), bk(τ), · · ·, etc. Then, re-
gardless of the dynamics of the system, the Poisson brack-
ets of the original variables determine those of the new
ones. There are two main advantages of this change of
variables. First, the Hamiltonian may be diagonal or have
a simpler form in the new basis. Second, the constraints as
well as the boundary conditions (which are also considered
as constraints in our approach) may be applied in a simpler
way in the framework of the new variables. Therefore, the
Hamiltonian has some partial role in quantization, since
the dynamics of constraints, (i.e. the consistency of the
constraints) should be investigated classically before quan-
tization. It is not possible to construct a quantum algebra
among the variables, unless the Hamiltonian has vanishing

3 Note that imposing the condition of unitarity on the phys-
ical states restricts n to positive integer values, which in this
case guarantees that the energy states are bounded from below.
Therefore, besides the quantum algebra of observables, some
other physical requirements such as the unitarity principle play
important roles in determining the set of physical states.

brackets with the constraints on the physical space (re-
duced phase space)4.
In other words, although the full dynamics of the physi-

cal variables is not essential for quantizing the theory, the
dynamics of the constrained variables should be worked
out completely before quantization, so that the final brack-
ets of the Hamiltonian with the constraints vanish. This
means that using the classical equations of motion, all the
secondary constraints should be computed before quanti-
zation. Schematically we can say

primary constraints+classical equations of motion

−→ secondary constraints . (70)

This point can be seen clearly in the example of the bosonic
string with Neumann boundary conditions. If one had con-
sidered only the primary constraints ∂σX(σ, τ)|σ=0,l = 0
instead of the whole set of (53), then one would not have
been able to deduce the expansion (58) for the fields. How-
ever, if one considers the primary constraints together with
the equations of motion (resulting from the Hamiltonian
(8) with B = 0), one obtains

∂τX(σ, τ) =Π(σ, τ), ∂τΠ(σ, τ) = ∂
2
σX(σ, τ) . (71)

Then one can easily check that

∂τ (∂σX(σ, τ)) = ∂σ(∂τX(σ, τ)) = ∂σΠ(σ, τ) ,

∂τ (∂σΠ(σ, τ)) = ∂σ(∂τΠ(σ, τ)) = ∂
3
σX(σ, τ) . (72)

In this way, the infinite set of constraints (53) in fact result
from the primary constraints plus the equations of motion
(see (70)). This argument shows that there is no way to es-
cape the fact that an infinite number of constraints really
exist. If one uses the full capacity of the classical equations
of motion (71), or the explicit form of the Hamiltonian in
terms of the normal coordinates as

H =
1

2

∑
n=0

c̃ncn+
1

2

∑
n=1

ãnan

(nπ
l

)2
, (73)

in order to determine the dynamics of the physical vari-
ables an(τ) and cn(τ), then one obtains ȧn = cn and ċn =
−(nπ/l)2an, which acquire the solution

an(τ) = an(0) cos
(nπ
l
τ
)
+
l

nπ
cn(0) sin

(nπ
l
τ
)

cn(τ) = cn(0) cos
(nπ
l
τ
)
−
nπ

l
an(0) sin

(nπ
l
τ
)
.

(74)

However, we again insist that the full dynamics of the phys-
ical variables is not necessary to quantize the theory. It

4 If the constrained quantities are assumed as vanishing op-
erators in the quantization procedure, then their brackets with
the Hamiltonian should also vanish. On the other hand, if one
quantizes the theory by imposing the condition that quantum
operators corresponding to constraints should kill the physical
states, then again it is clear that their brackets with the Hamil-
tonian should also kill the physical states.
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seems that this partial role of the classical equations of
motion in determining the dynamics of the constraints (or
boundary conditions in most of the familiar physical sys-
tems) is the hidden reason behind the common practice of
expanding the fields in terms of the classical solutions of
equations of motion before quantization.
Now let us consider again the string in the background

B-field to observe the above points. In this case, the equa-
tions of motion resulting from the Hamiltonian (8) read

∂τX(σ, τ) =Π(σ, τ)−B∂σX(σ, τ) ,

∂τΠ(σ, τ) =B∂σΠ(σ, τ)+M∂
2
σX(σ, τ) . (75)

This gives

∂τ (Φ(σ, τ)) = ∂σ(Π(σ, τ)) ,

∂τ (∂σΠ(σ, τ)) = ∂
2
σ(Φ(σ, τ))

... (76)

In this way, the full set of infinite constraints (61) emerge as
the result of combining the primary constraints
Φ(σ, τ)|σ=0,l = 0 with the equations of motion (75). Using
the expansion (66), the canonical Hamiltonian (8) in terms
of the normal coordinates can be calculated as

H =
1

2

∞∑
n=0

c̃nM
−1cn+

1

2

∞∑
n=1

ãnMan

(nπ
l

)2
. (77)

We observe again that the full content of the dynamics is
not needed for the quantization process. In fact, using the
Hamiltonian (77), or the equations of motion (75), to de-
termine the dynamics of the physical variables an(τ) and
cn(τ), one finds

ȧn(τ) =M
−1cn(τ) ,

ċn(τ) =−
(nπ
l

)2
Man(τ) n= 0, 1, · · · , (78)

which acquire the solution

an(τ) = an(0) cos
(nπ
l
τ
)
+
l

nπ
M−1 cn(0) sin

(nπ
l
τ
)
,

cn(τ) = cn(0) cos
(nπ
l
τ
)
−
nπ

l
M an(0) sin

(nπ
l
τ
)
(79)

and

a0(τ) =M
−1c0(0)τ +a0(0) ,

c0(τ) = c0(0) . (80)

As is apparent in order to quantize the theory, especially in
finding the important results of (69), one does not need to
know the explicit time dependence given in (79). Also note
that c0 is constant, in agreement with our previous trick of
adding the constant termM−1Bc0l/2 to the expansion of
coordinate field in (66).

7 Conclusion

In this paper, we have discussed different aspects of the
idea of considering the boundary conditions as Dirac con-

straints. Our theoretical laboratory for this aim was “an
open string in a background B-field”. We observed that
besides the singularity of the Lagrangian, the boundary
conditions can serve as a source of introducing the primary
constraints. A detailed analysis of the discretized version
of the model shows that the primary constraints are the
continuum limit of the equations of motion for the end
points, while the secondary constraints are derived by im-
posing the consistency conditions on these equations and
then going to the continuum limit. In this process, the con-
tinuity hypothesis is important. This implies that in order
to obtain a continuum solution, the fields in the adjacent
points in the corresponding discrete model should not dif-
fer drastically. In this way, it turns out that the discretized
model highly supports the existence of infinite chains of
second class constraints.
The continuity hypothesis is also deeply related to

Fourier expansion, as follows. It is well-known that in writ-
ing any field as a summation over the set of well-behaved
continuous sine and cosine functions, any finite discontinu-
ity in the field or in a finite number of its derivatives, is
not seen by the expansion and is somehow removed from
the problem. However, the boundary conditions should not
be considered as such discontinuities. Although boundary
conditions impose some restrictions on definite points at
the border of the medium (i.e. end points of the string),
they have a considerable influence throughout the whole
medium. The important point is that the Fourier expan-
sion plays the role of a carrier of boundary conditions from
the boundaries through the medium. In fact, the emer-
gence of an infinite number of constraints causes serious
restrictions on the Fourier modes invited to the expan-
sion of the fields. Since the Fourier modes are alive in the
whole medium as continuous and well-behaved functions,
the message of the boundary conditions is distributed in
this way throughout the system. A familiar example in this
regard is an open string with Neumann boundary condi-
tions, in which the fields are expanded in terms of a set
of discrete cosine modes only. In this case, the Fourier ex-
pansion is, in fact, used to soften and flatten the fields
undergoing definite conditions at the boundaries.
Summarizing, the continuity hypothesis implies, in the

discrete model, that the validity of constraints should be
spread in a set of a countable number of infinite adjacent
points near the boundaries. This fact, then, shows itself
in the emerging infinite number of constraints, and finally
causes omission of a large class of Fourier modes, which
somehow leads to propagation of the effect of boundary
conditions through the medium.
Another aim of this paper was to study the Poisson

structure of the reduced phase space. Using the original
coordinates of phase space implies serious difficulties in
computing the complicated Dirac brackets. We observed
that Fourier modes can serve as the normal coordinates of
the reduced phase space. Using the Fourier modes make it
possible to carry out the calculations. Moreover, this gives
a valuable understanding of the Poisson structure of the re-
duced phase space that contains the true physical degrees
of freedom of the model. In this way, after neglecting some
Fourier modes as redundant (constrained) coordinates, the
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remaining modes can be viewed as the physical degrees of
freedom, i.e. the coordinates of the reduced phase space.
Fortunately, these modes emerge as conjugate pairs with
a simple and well-established bracket. As explained in the
text, the brackets of the remaining modes define the Dirac
brackets of the fields. In this way, one only expands all as-
sociated fields and quantities in terms of the normal coor-
dinates, and then using their brackets one writes down all
the Dirac brackets. It turns out that for an open string with
mixed boundary conditions, there remains no doubt about
the fact that the Dirac brackets of the coordinate fields at
the boundaries of the string are nonzero due to the B-field.
Then, upon quantization, the coordinates of the string, and
hence the coordinates of theD-brane, are noncommutative.
Another new feature in our approach is that we do not

use of solutions of equations of motion in the process of
quantization. We have clearly shown in the model under
consideration that it is, in fact, possible to find the alge-
braic structure of the quantum theory without any need to
expand the fields in terms of solutions of classical equations
of motion. We argued that in any quantum theory, con-
structed upon quantization of a classical model, one only
needs to consider the dynamics of the constraints before
quantization. In other words, it is not essential to find the
dynamics of the complete set of physical variables to carry
out quantization.
We believe that our approach may be useful in ana-

lyzing the physical structure together with quantization of
all models with complicated boundary conditions. Two re-
cent examples can be seen in [25, 26]. This approach may
be applied also to more complicated systems such as mem-
branes [27–29].
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